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ABSTRACT 

 

SHEAR STRENGTH OF STEEL FIBER 

REINFORCED CONCRETE BEAMS 

By 

Mohammad Mousa Al-Khawaja 

Supervised by 

Prof. Dr. Yasser Hunaiti 

Dr. Mohammad Al-Rjoub 
 

 

Steel fibers (in concrete) have been used for many years to 

compensate the weakness in tension or diagonal tension (shear) of plain 

concrete members. Several researches were conducted to replace the 

conventional shear reinforcement (total or partially ) by discrete steel 

fibers . 

In this research a theoritical analysis has been conducted to study 

the shear strength of SFRC beams. Formulas are derived, in this 

work,using the Shear Failure Mechanism for slender beams and then 

extended to cover the deep beams 
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  Since the failure mechanism include a splitting failure,a new 

formula is proposed to predict the tensile splitting strength of SFRC. The 

formula accounts for the concrete compressive strength , volumetric fiber 

content and the fiber aspect ratio.Also the size effects of the beams was 

introuduced to the derived equations. 

A visual basic program is done , using the modified compression 

field theory to study the shear strength after accounting for the presence 

of the steel fibers . 

In order to check the applicability of the proposed Equations, one 

hundred beams were analysed using the proposed equations.The 

predicted strengths are compared with the experimental values. Good 

agreement with the corresponding experimental values are noticed ,the 

comparisons of the shear predictions of this study are found comparable 

with those found in litrature.  
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Introduction 

 

1. General 

 

Fiber reinforcing has been used for many years. Many fibrous 

materials have been used as metallic (steel fibers) or non-metallic (carbon 

fibers, fiberglass, polymeric fibers). The beneficial effects of fiber 

reinforcement are to improve the mechanical properties such as toughness 

and strength and to cut the production costs by reducing or eliminating 

some forms of conventional reinforcement. 

Fiber reinforced concrete is a whole class of materials rather than a 

single new type. Different combinations of fiber types, fiber contents and 

matrix compositions mixed using various production methods yield a vast 

range of material behavior. The mechanical behavior of the concrete may, 

due to change in fiber content alone, vary between being almost as brittle 

as plain concrete to being close to elastic-plastic or even deformation-

hardening materials. Due to this feature of fiber reinforced concrete, the 

flexibility in changing the mechanical behavior for different uses, the 

material design is closely related with the structural design and vice versa.  

 The steel fibers as shown in Fig. 1 are either round or rectangular 

cross- section with deformed ends or deformed surfaces. The fiber length 

ranges from 6 mm to 75 mm and the aspect ratio of the fiber (length to 

thickness) varies from 30 to about 150. The volume fraction of fibers 
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ranges from 0 % to 3% with practically recommended limits not exceeding 

1.5%.       

 

Figure 1: Types of steel fibers 

 

  

 The steel fiber reinforced concrete (SFRC) has been used in many 

applications in airports and highway paving and other plain structures 

where fibers act as crack distribution reinforcement. The random 

distribution of fibers arrests the micro cracks of SFRC, which controls the 

propagation and widening of the dowel cracks. 

 Several successful attempts were made to replace (partially or 
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totally) the conventional steel reinforcement especially for HSC beams. 

Furthermore the steel fibers are used in shotcrete applications that can be 

used in tunnels or repair of structures. 

 

2. Shear Strength in SFRC 

  

 The use of fibers to improve the shear behavior of concrete is 

promising. Tests performed to study the shear behavior of SFRC can be 

categorized into two general groups: direct shear tests (Swamy 1987, Taan 

and Mansur 1990 and Amir et al. 2002), and tests on beams and corbels 

(Batson et al. 1972, Sharma 1986 and Kwak et al. 2002). The direct shear 

tests are performed to understand the basic transfer behavior of concrete, 

while the tests on beams are necessary to understand the behavior of 

structural members reinforced by fibers. 

 Tests showed that the addition of fibers generally improves the shear 

strength and ductility of concrete. Numerous research works like [Mansur 

et al 1986] reported that the shear reinforcement (stirrups) can be partially 

or totally replaced by the use of steel fibers. Most of the work has been 

limited to concrete of normal strength. The lack is even greater for research 

on shear strength of SFRC beams involving high strength concrete. 

 It is reported that the increase in shear strength can vary drastically 

depending on the geometry and properties of both the fibers and the 
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concrete matrix. 

 In general, fibers proved to be more efficient in high strength 

concrete than in normal strength concrete, by increasing both the ultimate 

load and overall ductility. 

 Despite the availability of some empirical relationships or 

experimental research that describe the shear strength of SFRC elements, 

more researches (analytical and experimental) are needed to develop a 

better understanding of shear behavior of fiber reinforced concrete 

elements. 

 

3. Objectives and Scopes  

  

 This work is devoted to investigate the behavior of both normal and 

high strength SFRC beams subjected to shear. The current work will use 

the shear failure mechanism in the formulation of the shear strength of 

SFRC beams. The Major objectives of this work can be summarized as 

follows: 

1. To formulate the shear strength of SFRC slender beams by studying 

the beam failure mechanism, accounting for the size effect. 

2. To study the shear strength of the SFRC deep beams. 

3. To study the shear strength of SFRC by extending the modified 

compression field theory (MCFT), that is used to study the 
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conventional RC, to account for the presence of steel fibers. 

 

4. Layout of Thesis 

  

 The thesis consists of six chapters: 

• A general introduction describing the effect of adding steel fibers on 

the mechanical properties (especially for the shear strength) of 

SFRC beams and the study objectives are presented in this chapter. 

• Chapter two reviews the works found in literature that studied the 

shear strength of SFRC elements. 

• The mechanical properties of SFRC material are presented in 

chapter three. 

• The formulation of the governing equations is shown in chapter 

four. 

• The proposed equations are verified in chapter five. 

• Finally the conclusions and recommendations are summarized in 

chapter six. 
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Previous Works 

 

1. General 

  

 The presence of steel fiber in concrete or mortar shows several 

potential advantages when used to supplement or replace the vertical 

stirrups or bent bars. This is caused by the random distribution of the steel 

fiber through the volume of concrete or the matrix, at which closer spacing 

than can be obtained with reinforcing bars. Also the shear friction strength, 

first crack tensile strength and the ultimate tensile strength are increased 

due to the presence of steel fibers. 

 

2. Previous Works 

 

 In 1972 Batson et al. carried out a series of tests to determine the 

effectiveness of steel fibers as web reinforcement in small beams (100 x 

150 x 2000 mm) with conventional flexural steel. The parameters they 

studied were the span to depth ratio (a/d), the fiber size, type, and fiber 

volume fraction content. 

 The study findings were, for shear-span-to depth ratio (a/d) of 4.8 

the non-fiber beams failed in shear and developed a shear stress failure of 

1.91 MPa, where for fiber fraction of 0.88%, the average shearing stress at 

failure was 2.14 MPa with a flexure-shear failure; for 1.76% fiber fraction 
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2.28 MPa with a moment failure, and for 2.66% volume 2.43 MPa, also 

with moment failure. 

 It was found that as the shear-span ratio decreased and fiber volume 

increased, higher shear stresses were developed at failure and a 

modification of failure mode occured. 

 In 1975 Paul and Sinnsmon studied the effect of the presence of 

straight steel fibers on the shear capacity of concrete in a series of seven 

tests similar to the work of Batson et al. [1972]. Their results agreed with 

those of Batson et al. 

 Sharma [1986] tested a set of seven beams with steel fiber 

reinforcement, of which, four beams contained stirrups. Based on his work 

and the works of Batson et al. [1972] and Williamson and Knab [1975], 

Sharma proposed the following equation for predicting the average shear 

stress, Vcf of steel fibers. 

 

                                 

1
4

'2

3
tcf

d
V f

a

 
 
 

=                (2.1) 

 
Where: 

 d/a :   The effective depth-to-shear-span ratio . 

 '

tf  :  The tensile strength of concrete obtained from results of indirect 

tension tests on 150 x 300 mm cylinders, (may be given as '0.79 cf ). 

The simplicity of Eq. 2.1 makes it attractive, but this equation does 
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not explicitly account for other factors that are known to significantly 

influence the shear strength, as the fiber content, the shape of the fibers, 

aspect ratio (lf /df) and the flexural reinforcement ratio.  

Sharma found that the steel fibers are effective in increasing the shear 

strength of concrete, and steel fiber reinforced concrete beams have a high 

post-cracking strength, which is a desirable characteristic in design. Also 

SFRC beams have more ductility and significant toughness than that for 

conventional reinforced concrete beams. And the presence of fibers in 

concrete restricts the propagation of cracks and allows more uniform 

cracking. 

 

Mansur et al. [1985] studied the shear strength of SFRC beams have 

no stirrups. The beams were made of normal strength and contain hooked 

ends steel fibers.   

The conclusions showed that the beams have no fibers failed in 

shear for all a/d ratios. The inclusion of short fibers in the concrete matrix 

tends to change the failure mode from shear to flexure for higher values of 

a/d. 

For a particular volume fraction of fibers it was noticed that, the 

mode of failure changes from shear to shear compression and then to 

diagonal tension and flexure when a/d ratio is increased. 
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 Further more, the higher values of the longitudinal reinforcement 

ratio, ρ induces shear failure because longitudinal bar reinforcement 

contributes more to the bending than to the shear resistance of a beam. 

Similarly the presence of fibers, in higher concrete strength increases the 

shear resistance more than the corresponding increases in the bending 

moment capacity. 

 Mansur et al. [1986] developed the following equation for predicting 

the shear strength of fibrous concrete  

 

                              c syV V V= +  (2.2) 

 

Where: 

Vc:  shear resistance of concrete. 

Vsy: shear resistance due to web reinforcement. 

  

 They considered that shear strength of fibrous concrete beams 

consists of two parts; the first term is adopted from ACI Building Code 

[2002] Eq. (11.5), where the concrete strength of reinforced concrete Vc can 

be calculated as follows: 

 

        ' '0.16 17.2 0.29c c c
Vd

V f bd f bd
M

ρ   
        

= + <  (2.3) 

Where: 



www.manaraa.com

   12 

'
cf : Standard compressive strength of concrete (MPa). 

ρ : Percentage of longitudinal reinforcement steel 

  

 An additional shear strength tuσ , caused by the presence of steel 

fibers, is added to that obtained from Eq.2.2 of the conventional RC. 

 Mansur substituted the contribution of the conventional shear 

reinforcement, Vsy by the contribution of steel fibers, ( tubdσ ). So Eq. 2.2 is 

rewritten in the following form 

 

                                 n c tuV V bdσ= +  (2.4) 

 

 Where tuσ  is the stress after crack formation calculated as the 

difference between splitting strength of normal concrete and fibrous 

specimens. 

 The term tuσ  depends on many factors such as the fiber content, 

aspect ratio, surface characteristics of the fibers and the maximum 

aggregate size.  

 

In 1987 Narayanan and Darwish studied the behavior of steel fiber 

reinforced concrete beams subjected to predominant shear, by testing 

experimentally 49 simply supported rectangular beams loaded by two 

symmetrically concentrated loads. 
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For comparison purpose, they tested 10 beams with conventional 

stirrups, while the remaining beams contained fibers of variable volume 

fraction Vf, and aspect ratio lf /df, variable concrete strength f
’
c and different 

longitudinal steel ratios ρ%. 

Their findings showed an improvement of the ultimate shear 

strength of beams containing steel fibers up to Vf =1% compared with those 

contained conventional stirrups, and a significant increase of the first crack 

shear strength due to the crack arresting mechanism of the fibers. Also the 

study reported that any increase in the fiber volume more than 1% did not 

significantly improve the shear strength. 

Based on these tests and data obtained by other researchers they 

proposed an empirical equation to evaluate the ultimate shear strength of 

SFRC beams. 

 

                   
'

0.24 80 bu spfc

de
a

vv f ρ
 
 
  

= + +     (2.5)     

 

Where: 

a/d = Shear span to depth ratio. 

'

spfc
f = Split cylinder strength of (SFRC).

( )

'
0.7

20spfc

cuf
f

F
F

f + +

−

=  

F = Fiber factor = (lf /df) Vf Df 

lf / df = Fiber length to diameter 
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Df =Bond factor equals 0.50 for round fibers, 0.75 for crimped fibers, and          

1.00 for indented fibers. 

Vf = Volume percentage of steel fibers. 

ρ = Percentage of longitudinal tensile reinforcement. 

cuf
f  = The cubic strength of fiber reinforced concrete, in MPa. 

e=None dimensional factor equals l.0 when a/d > 2.5 ,and 2.5 d/a  when 

a/d < 2.5. 

Vb= 0.41 τ F 

τ  = Average fiber matrix interfacial stress taken as 4.15 MPa. 

 

According to Narayanan and Darwish, the first term in brackets in 

Eq. 2.5 accounts for the fiber contribution in terms of the split cylinder 

strength, the second term accounts for the dowel action. The third term 

accounts for the contribution of fibers across the inclined crack. 

 

 Ashour et al. [1992] studied the behavior of high-strength concrete 

beams containing steel fiber instead of shear reinforcement by testing  

under the action of flexure and shear. 

The authors observed that the behavior of concrete beam subjected 

to bending and shear is affected by the shear-span to depth ratio (a/d).  The 

addition of fibers enhances the mechanical and structural properties of 
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normal as well as high-strength concrete beams. Also the tested beams 

exhibited failure modes similar to conventional beams (without fibers), but 

the presence of high percentage of steel fibers transformed the failure mode 

into a more ductile. The beams of moderate length beams (where 3 <a/d < 

6) with no fibers failed soon after the formation of the first diagonal cracks. 

The steel fibers became more effective after the formation of shear cracks 

that continued to resist the principal tensile stresses until the complete 

pullout of all fibers occurred on one critical crack. 

Test results showed also that increasing the fiber content increases 

the shear strength. The rate of increase was higher as a/d became smaller. 

Ashour et al. proposed the following equations, as a modification of the 

known Zsutty’s equation as 

 

          For a/d > 2.5 

                             3

0.333

'2.11 7u c F
d

a
fv ρ  

     

= +  (2.6) 

 For a/d < 2.5 

      

0.333

3 ' 2.5
2.11 7 2.5u c b

F
d a

a da
d

f vv ρ
 

     
            

 

= + + −  (2.7) 

 

Where the parameters F, f’c, a, d and ρ are the same parameters 

mentioned earlier. 
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  Kwak et al. [2002] tested experimentally twelve simply supported 

beams containing three hooked steel fiber-volume fraction Vf (0, 0.5 and 

0.75 %), and three span-depth ratio a/d (2,3 and 4), and two compressive 

strengths (31 and 65 MPa), Kwak et al. [2002] reported that the nominal 

stress at first shear cracking and the ultimate shear strength increased with 

increasing fiber content. 

They reported also that the increase of steel fiber would change the 

nature of failure mode; compared with that of conventional RC beams 

(without steel fibers).  

Kwak et al. [2002] proposed the following empirical equation that 

predicts the shear strength of SFRC beams as follows : 

 

                   

0.22

0.970.7 0.82.1
spfc bu

d

a
v e f vρ

 
  
 

= +   (2.8)  

                                 

Where: a, d, F, df, lf, Df, Vf, ρ, 
'

spfc
f , 

cuf
f , and vb are the same as the 

parameters Mentioned in Narayanan and Darwish [1978]. 

e=None dimensional factor equals l.0 when a/d > 3.5, and 3.5 d/a  when 

a/d < 3.5. 

  

  

 Noghabi [2000] conducted a study on high strength reinforced 
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concrete beams loaded by shear and bending moments. Various types of 

fibers were added to the concrete matrix up to 1% per volume of concrete. 

Four sizes of beam depths and lengths were used. (d= 195 to 410 mm and 

beam span = 1.2 to 5 m). 

It is found that the fiber cocktail (mixing fibers with different aspect 

ratios) improves more than using a single type of fiber, and the chosen steel 

fibers are competitive with the conventional stirrups. 

 

Amir et al. [2002] studied the shear strength of steel fiber reinforced 

concrete using the direct shear method. The tested specimens contained 

fiber with volume fraction ranged from 0% to 2%. The study showed that 

significant improvements are obtained as the volume of fiber increased. 

The study suggested that the ultimate shear strength τmax to be given by the 

formula 

 

                              
max f

nkVοτ τ= +  (2.9) 

 

Where 
οτ : is the shear strength of the plain concrete. k equals 4.29 for             

flattened end fibers and 2.9 for crimped geometry fibers. 

 Vf : is the volume fraction of fiber. 

 n : equals 1 for flattened end fibers and 0.5 for crimped geometry. 
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3. Shear Failure Mechanism Studies 

 

 Despite the fact that all experimental studies of the works 

mentioned in the previous sections describe the failure mechanisms and 

modes, the proposed formulation are founded on empirical or semi-

empirical equations that expresses the shear strengths on terms of the direct 

or indirect tensile strengths. 

 On the other hand several studies attempted to study the behavior of 

shear elements and predict their shear strength by studying the crack 

mechanism. Among those, the Modified Compression Field Theory 

(MCFT) [Vecchio and Collins 1986] was developed to predict the load 

deformation response of RC members loaded by shear or shear combined 

with torsion. 

 Also, Zararis [1988,1995] studied the failure mechanism to predict 

the shear strength of RC plates. The failures due to yielding of steel 

reinforcement as well as the failure caused by concrete crushing were 

checked. The predicted ultimate loads showed very good agreement with 

the experimental values. He extended the failure mechanism to predict the 

shear strengths of beams with and without shear reinforcement [Zararis 

2001, Zararis 2003] 

  A simple expression was derived to determine the shear strengths of 

slender beams have no shear reinforcement [Zararis 2001] and beams 
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containing stirrups [Zararis 2003]. The proposed formulas were verified 

through the comparisons with experimental data from literature. 

 Since the failure mechanisms of RC beams are approximately 

similar to that of SFRC, the failure mechanism approach used in RC beams 

is to be extended to cover the SFRC beams after introducing the effect of 

presence of steel fibers in concrete matrix, which is to be covered in this 

thesis. 
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Behavior of Steel Fiber Reinforced Concrete 

 

 1. General  

 

Steel fiber reinforced concrete  (SFRC) is made of 

hydraulic cement containing coarse aggregate and 

discontinuous discrete steel fibers (ACI 544R 1994). The 

concrete used in the mixture is of a usual type, also the 

proportions should be varied to obtain good workability and 

take full advantage of the fibers. This may require limiting the 

aggregate size, optimizing gradation, increasing the cement 

content and adding admixtures to improve workability. 

The fibers may take many shapes. Their cross section 

includes circular, rectangular, half round and irregular or 

varying cross section. They may be straight or bent, and come 

in various lengths. A conventional numerical parameter called 

the aspect ratio is used to describe the fiber length to diameter 

ratio; this may vary from 30 to about 150. Fibers have been 

produced from steel, plastic, glass and natural materials of 

various shapes and types. 
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The SFRC mixtures use from 0.25 to 1.5 volume 

percent fibers. Two major reasons are intended by adding 

fibers to the conventional concrete: the first is to produce a 

stiffer composite material and the second is to hold the matrix 

together after it cracks. The strength of the cracked composite 

may therefore be significantly increased and the toughness as 

well as the ductility of the new material will be improved. 

SFRC may be best thought of as a concrete with 

increased strain capacity, impact resistance, energy absorption, 

and tensile strength. The increase in these properties may vary 

from substantial to insignificant depending on the quality and 

types of added fibers. Full-scale tests have shown that steel 

fibers are effective in supplementing or replacing the stirrups 

in beams (Craig 1993 and Sharma 1986). 

The strengthening mechanism of the fibers involves 

transfer of stress from the matrix to the fibers by interfacial 

shear or by interlock between the fiber and the matrix. Thus 

the stress is shared by the fiber and matrix in tension until the 

matrix cracks and the total stress is progressively transformed 

to the fiber. 



www.manaraa.com

�� 

An understanding of the mechanical properties of 

SFRC and their variation with fiber type and content is an 

important aspect of a successful analysis and design. These 

properties are discussed in the following sections. 

 

2. Compressive Strength of SFRC 

 

The compressive properties of steel fiber reinforced concrete 

(SFRC) are relatively less affected by the presence of fibers as compared to 

the properties under tension and bending.  

The influence of fibers in improving the compressive strength of the 

matrix depends on whether mortar or concrete is used and on the magnitude 

of compressive strength. Studies prior to 1988 showed that with the 

addition of fibers there is an almost negligible increase in strength for 

mortar mixes; however for concrete mixes, strength increases by as much 

as 23%. Furthermore, Otter and Naaman [1988] showed that use of steel 

fibers in lower strength concretes increases their compressive strength 

significantly compared to plain unreinforced matrices and is directly related 

to volume fraction of steel fiber used. This increase is more for hooked 

fibers in comparison with straight steel fibers, glass or polypropylene 
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fibers. The typical influence of fibers on the stress- strain curve of concrete 

composites is shown in Fig 2.            

Ezeldin and Balaguru [1992] conducted tests to obtain the complete 

stress-strain curves of steel fiber-reinforced concrete with compressive 

strengths ranging from 35 MPa to 84 MPa. The matrix consisted of 

concrete rather than mortar. Three volume fiber fractions and three aspect 

ratios were investigated. It was reported that the addition of hooked-end 

steel fibers to concrete, with or without silica fume, marginally increased 

the compressive strength and the strain corresponding to peak stress.  
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Figure 2: Stress-strain response of SFRC under compression (a) hooked steel fibers; (b) 

straight steel fibers [Otter and Naaman 1988]  

 

 The increase in fiber content causes an increase in the compressive 

strength of SFRC ranging from 5% to 25% [Ezeldin and Lowe 1991]. 

 

3. Tensile Strength of SFRC 

 

Tension failure of cement-based matrices is rather brittle and the 

associated strains are relatively small in magnitude. The addition of fibers 

to such matrices, whether in continuous or discontinuous form, leads to a 

substantial improvement in the tensile strength of the SFRC in comparison 

with the properties of the unreinforced matrix. The enhancement of the 

properties is particularly noticeable. 

 The stress–strain or load–elongation response of fiber composites in 

tension depends mainly on the volume fraction of fibers. Typical stress–
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strain or load–elongation curve for conventional SFRC Composites are 

shown in Fig. 3.  In general, the response can be divided into two or three 

stages, depending on whether the composite is SFRC (fiber volume less 

than about 3%). These stages are summarized as follows:  

 Before cracking, the SFRC can be described as an elastic material 

with a stress–strain response very similar to that of the un-reinforced 

matrix.  

Figure 3: Typical load-elongation response in tension of fiber reinforced concrete; (a) 

using premixed steel fibers, and (b) using premixed polypropylene fibers [Naaman 

1985]. 

After cracking and in bridging the cracked surface, the fibers tend 

to pull out under load resulting in a sudden change in the load–elongation 

or stress–strain curve.  

  Beyond the peak point, a third stage of behavior exists 

characterized by failure and/or pullout of the fibers about a single critical 
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crack. The corresponding descending branch of the load–elongation curve 

can be steep or of moderate slope depending on the fiber reinforcing 

parameters and whether a brittle or ductile failure occurs.  

The multiple cracking stage described above occurs only if the 

maximum post cracking stress is larger than the cracking stress; otherwise, 

in the case of conventional SFRC, with a relatively small volume fraction 

of fibers, the second portion of the curve vanishes and is replaced by a 

sudden drop in the load–elongation curve joining the cracking load to the 

post cracking load. Hence the load–elongation response is reduced to two 

main parts (stages I and II) as illustrated in Fig 3.  

 

4. Flexural Strength of SFRC 

 

The presence of steel fibers affects the flexural strength of concrete 

much greater than the direct tension or compression. The ultimate strength 

in flexure could vary considerably depending upon the volume fraction of 

fibers, length and bond characteristics of the fibers and the ultimate 

strength of the fibers. Depending upon the contribution of these influencing 

factors, the ultimate strength of SFRC could be either smaller or larger than 

its first cracking strength. 
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   Generally, there are three stages of the load-deflection response of 

SFRC specimens tested in flexure and schematically they are shown in Fig. 

4.  

    The first stage is linear up to point A. The strengthening mechanism 

in this portion of the behavior involves a transfer of stress from the matrix 

to the fibers by interfacial shear. The imposed stress is shared between the 

matrix and fibers until the initiation of the first cracks where the matrix 

starts to crack.  

 
 

Figure 4: Schematic load-deflection diagrams of SFRC. 

     Then a transition nonlinear portion between point A and the 

maximum load capacity at point B is encountered. In this stage, which 

occurs after cracking, the stress in the matrix is progressively transferred to 

the fibers. As the load increases, the fibers tend to gradually pull out from 
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the matrix leading to a nonlinear load–deflection response until the ultimate 

flexural load capacity (peak strength) at point B is reached.  

 The stage represents the post peak descending portion, which starts 

from the peak strength and continues until the complete failure of the 

composite. This part refers to the degree at which loss in strength is 

encountered. As the deformation increases it reflects also an important 

indication of the ability of the fiber composite to absorb large amounts of 

energy before failure occurs. 

The nonlinear portion between A and B exists only if a sufficient 

volume fraction of fibers is present. For low volume fraction of fibers (Vf < 

0.5%), the ultimate flexural strength coincides with the first cracking 

strength and the load–deflection curve descends immediately after the 

cracking load. Typical load–deflection curves of SFRC beams observed 

experimentally for different types of fibers are shown in Figure 3.4 

Ezeldin and Lowe [1991] studied the flexural strength properties of 

rapid-set materials reinforced with steel fibers. Four fiber types made of 

low-carbon steel were incorporated in their study. Two were hooked and 

one was crimped at the ends, and the fourth was crimped throughout the 

length. Through out their study an increase in the flexural strength was 

observed. The fiber efficiency in enhancing the flexural strength is 

controlled by the fiber surface deformation, aspect ratio, and fiber content.  
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5. Modulus of Elasticity   

   

  The modulus of elasticity of a material, whether in tension, 

compression, or shear, is a fundamental property that is needed for 

modeling mechanical behavior in various structural applications. 

Numerous studies have addressed the modulus of elasticity of 

composite materials. They lead to several models that range from the very 

simple to the very sophisticated. Among the simplest models for 

composites made out of two different materials, the upper- and lower-

bound solutions or a combination of them (described below) only depend 

on the volume fraction and the modulus of each material. More advanced 

models developed for fiber reinforced composites include, in addition to 

the properties of the interface between the two materials, the fiber 

distribution and orientation of fibers, the aspect ratio, and whether the 

fibers are discontinuous or not. 

The most common and the simplest models to predict the modulus 

of elasticity of SFRC as a composite made out of two materials are the 

upper-and the lower-bound solutions or an arithmetic combination of both.  
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The upper-bound solution assumes that the fibers are continuous 

and oriented in the direction of loading along which the modulus of 

elasticity is studied. It leads to the following equation: 

 

                                    ( )1cl f mf fV VE E E= + −   (3.1) 

 

in which the subscripts c, L, f, and m stand respectively for composite, 

longitudinal, fiber, and matrix.  

 The lower bound solution assumes that the fibers are lumped with 

their axis normal to the direction along which the modulus is measured. It 

leads to the following equation: 

 

        ( )1/cT f m mf fV VE E E E−= +                                (3.2) 

 

in which the subscript T stands for transverse.  

For a composite with randomly oriented fibers, Halpin and Tsai 

[1969] suggested an equation based on a combination of Eqs. (3.1) and 

(3.2). Although their predictions of longitudinal and transverse moduli 

were different from the above upper- and lower-bound solutions, their 

equation can be used as a first approximation with the above equations. It is 

given by: 
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            ( ) ( )3 5
8 8

c cL cTE E E= +                          (3.3)  

 

Experimental studies [Fanella and Naaman 1985; Shah et al. 1978] 

have shown that the addition of fibers have only a slight effect on the 

ascending branch (modulus of elasticity) of the stress–strain curve of the 

composite. Patton and Whittaker 1983 have also observed that the effect of 

adding fibers up to 4% by volume is small and linear for composites tested 

in flexure. 

 

6. Strain Capacity 

 

The ability to withstand relatively large strains before failure, the 

superior resistance to crack propagation and the ability to withstand large 

deformations and ductility are characteristics that distinguish fiber-

reinforced concrete from plain concrete. These characteristics are generally 

described by "toughness" which is the main reason for using fiber-

reinforced concrete in most of its applications.  

Unlike plain concrete specimens, the presence of fibers imparts 

considerable energy to stretch and debond the fibers before complete 

fracture of the material occurs. Toughness is a measure of the ability of the 
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material to absorb large amounts of post-elastic strains or deformations 

prior to failure. Typical load–deflection curves of SFRC specimens in 

comparison with plain concrete specimens are shown in Fig. 5.  

ASTM-C 1018 provides Method A for evaluating the toughness of 

fiber reinforced composites through the use of a toughness index. The 

toughness index is calculated as the area under the load–deflection curve up 

to the prescribed service deflection divided by the area under the load–

deflection curve up to the first cracking deflection. Three indices are 

described in ASTM-C 1018: I5, I10 and I20 corresponding respectively to 

deflections of 3, 5.5 and 10.5 times the deflection at first cracking.  

These indices (computed as shown in Fig. 5) provide indications of 

the shape of the load–deflection response (post cracking) and available 

ductility. It should be emphasized that the values of I5, I10 and I20 are unity 

for elastic, perfectly brittle material behavior and is equal to 5, 10 and 20 

respectively for elastic, perfectly plastic material behavior.  
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            Figure 5: Toughness indexes from flexure load-deflection diagram. 

The same variables that affect the ultimate flexural strength of 

SFRC beams also influence the flexural toughness; namely, the type of 

fiber, the volume fraction of fiber, the aspect ratio, the fiber's surface 

deformation, bond characteristics and orientation.  

Balgaru et al. [1992] studied the flexural behavior of steel fiber 

reinforced concrete. The focus was on the toughness behavior. It was noted 

that addition of silica fume improves the strength and slightly reduces 

ductility. The study concluded that the increase in fiber content results in 

consistent increase in ductility and energy-absorption capacity. The post 

peak load–deflection responses are flatter and the toughness indices are 

higher. 
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In addition to the Toughness Indexes 5 and 10 computed using the 

ASTM procedure are not sensitive enough to show the variations that are 

present in the load–deflection responses. If deflections are measured 

accurately, values 50 and 100 can be computed for all fiber types and fiber 

contents greater than or equal to 30 kg/m
3
. Also the Higher fiber contents 

result in much higher load-retaining capacity at large deflections. In almost 

all cases, there was a considerable difference in the 100 values between 

fiber contents. For a given fiber content, toughness indices are smaller for 

high-strength concretes compared to normal strength concretes. The 

differences are less significant at higher fiber volume fractions.  

 

7. Poisson's Ratio 

 

   Little information exists on the Poisson's ratio of fiber-reinforced 

concrete. In most analytical studies, the Poisson's ratio is generally 

assumed to be the same as that for concrete. This may be a reasonable 

assumption provided that the composite remains in the elastic range of 

behavior. As soon as cracking develops, the confining effects of the fibers 

bridging the cracks will have a significant effect on the lateral deformation, 

consequently on the value of the measured Poisson's ratio.  
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Derivation of The Governing Equations 

 

1. General 
   

  Despite the extensive studies the problem of how shear failure 

occur in RC as well as SFRC, remains unresolved. And the shear in the 

design codes [ACI-02, CEB-FIP] is based on empirical or semi-empirical 

considerations. 

  In this chapter, an attempt is made to derive equations that govern 

the failure mechanism of SFRC beams of no stirrups. The approach that 

was derived firstly by Zararis for conventional RC plates [1988, 1995] and 

for RC beams [2001, 2003] is applied in this research work for SFRC 

beams, since the failure mechanisms for RC and SFRC are almost alike. 

  In this study the influence of steel fiber on increasing the modulus 

of rupture, (that in turn affects the depth of the compression block), as well 

as the splitting strength of steel fibers and the size effect are found and 

introduced to the governing equations. 

  Also, the formulation of the modified compression field theory 

(MCFT) [Vecchio and Collins, 1986] after accounting for the influence of 

adding steel fibers is presented and applied, especially for deep beams. 
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2. Shear Strength Based on Failure Mechanism (Slender Beams): 

2.1 Critical and Diagonal Crack Characteristics 

The critical failure cracks in slender beams have no shear 

reinforcement under two-point loading; involve two branches as shown 

Fig. 6. Normally, these two branches are formed at different time instants 

and are due to different causes. The first branch is an inclined shear crack, 

which develops after the onset of nearby flexural cracking. 
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Figure 6: (a) Crack pattern of simply supported beam under two-point loading (b) 

Simplified equivalent deformation of steel(c) Details. 

 

The failure in slender beams is caused by the formation of the 

second branch of the critical crack, which initiates from the tip of the first 

branch and propagates toward the load point crossing the compression 
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zone. This mode of failure is conventionally called diagonal tension failure, 

that occurs in slender beams [where shear span to depth ratio (a/d) > 2.5]. 

The analytical expressions derived in this chapter describe the 

characteristics of these two branches, as well as the shear failure 

mechanism. 

 

2.2 Stresses and Forces on The first Branch of Shear Crack 

  

 Throughout the study of failure mechanism in RC plates, Zararis 

[1988,1995] showed that by the formation of the first crack, there will be a 

strain transverse to the crack due to the orthogonal crack opening 

mentioned earlier. The opening of the first branch shear crack is assumed to 

be perpendicular to its direction. 

A simplified equivalent deformation of steel bars at the crack 

location is shown in Fig. 6 (c). If the initial crack direction forms an angle 

φ with the transverse axis (Y-axis), and the steel stresses (in this stage) 

obeys Hook’s law, then σ = ε E and τ = G γ  where: 

σ, τ : normal and shear stresses. 

E, G: are Hooks and shear rigidity moduli of elasticity, in which G is given 

by ( )2 1G E ν+= , and ν  is Poisson’s ratio. 

ε , γ : are the normal and shear strains. 
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 The normal stress in x-direction and the shear of steel bars can be given 

by: 

             s ssx E εσ =     (4.1-a) 

 

                                      sxy s xyG γτ =     (4.1-b) 

  Where: 

                      
cos

x

s

m

w

s ϕ
ε =  , 

cos

y

xy

m

w

s ϕ
γ =  

 

  xw , yw , ϕ , ms  are shown in Fig. 6. 

  

 The compression zone exists above the tip of the first branch of the 

critical crack. This solid zone essentially acts as a buffer preventing any 

meaningful contribution of shear slip along the crack interface. So, at this 

stage no aggregate interlock and dowel forces develop. If the value of 

poisson’s ratio is taken equal to 0.3 and the strains ( xε and yε ) are written 

in terms of the strain orthogonal to the crack direction crε , then Eq. 4.1 can 

be rewritten in the form: 

                         

                       
2coss crsx E ε ϕσ =       (4.2-a) 

  

                0.4 cos sins crsxy E ε ϕ ϕτ =    (4.2-b) 
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   The substitution of s crE ε  of Eq. 4.2-a into Eq. 4.2-b leads to the 

following relationship that expresses shear stresses in term of the 

longitudinal normal stresses of steel. 

 

                                    0.4 tan
sxsxy ϕστ =    (4.3) 

  

  The multiplication of the stresses sxyτ and 
sx

σ  by the area of steel 

As, produces the shear and normal forces in the steel Vd and T, respectively, 

and the following equation is obtained. 

 

          0.4 tand TV ϕ=    (4.4) 

 

  This analysis implies that the shear force of steel bars at a crack 

location is caused by a pure shearing deformation of the bars and is not due 

to a kinking or a slip of crack faces. 

  Due to the assumption of orthogonal crack opening, the normal 

force T and shear force Vd, of steel bars are the only forces acting on the 

faces of the first branch of the critical diagonal crack. On the other hand, 

the normal and shear concrete forces in the compression zone, C and Vc, 

respectively, are also depicted. 
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2.3 Height of the First Branch of Shear Crack 

  

 From the strain distribution shown in Fig. 7-e one can obtain the 

following: 

             
c

s

c

d c

ε

ε
=

−
    (4.5) 

 

Where c = is the depth of compression zone above the tip of the diagonal 

crack, d = is the effective depth to the longitudinal flexural reinforcement; 

and εc = is the concrete strain of extreme fiber in compression. 

   

  From the equilibrium of forces acting on the triangular concrete 

element below the tip of an inclined shear crack, shown in Fig. 7(b), it can 

be seen that concrete compressive stresses are also involved below the tip 

of the inclined crack on the vertical section of the beam. These stresses are 

transferred from the top fiber of the beam to the area below the tip of the 

diagonal crack. This explains the presence of compressive force ∆T in Fig. 

7(b). 
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Figure 7:Forces and stresses at the inclined crack (a) Forces on the left hand side of 

the cracked beam (b) Forces on triangular concrete element (c) concrete compressive 

stresses along depth of beam (d) concrete shear stresses along beam depth (e) Strain 

distribution. 

 

  

  The concrete compressive stresses above the tip of the diagonal 

crack form a parabolic curve shown in Fig. 7(c). 

 

 The resultant of the concrete compressive stress of this block is 

equal to the normal steel force T at the diagonal crack. So, the variation of  

(c/d) with εc is very small, and it is reasonable to use a single value of (c/d) 

for all values of εc. For convenience this value is taken equal the peak 

strain. εco, (the strain that corresponds to the ultimate concrete strength). 

According to ACI-Code [2002] the value of εco is equal to 0.002, and the 
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corresponding resultant of concrete stresses in compression with width b is 

C = (2/3) b c f
’
c . 

 Then, equating the normal steel force T with the force C and taking 

into account Eq.4.5 after substituting Es = 2 X 10
5
 MPa, yields the 

following equation: 

 

                         

2

' '
600 600 0

c c

c c

d df f

ρ ρ 
 
 

+ − =    (4.6) 

 

Where ρ  = steel ratio, and f’c = concrete compressive strength in MPa. 

 

2.4 Angle at First Branch of Critical Crack 

 
 The resultant of the shear distribution shown in Fig.7 (d) equals the 

total external shear force V, so 

 

    
c d

V V V= +     (4.7) 

Where: 

    
2

3
c cV

c
bd

d
τ=     (4.8-a) 

    1d cV
c

bd
d

τ
 

= − 
 

   (4.8-b) 
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 The substitution of 
c

τ  from Eq.4.8 (a) into Eq.4.8 (b) and 

substituting Vc by V-Vd, yields the following equation that expresses the 

shear force in the steel  

 

                                  
11 1
3d

c cV V
d d

  
       

= − −    (4.9) 

 

Fig. 8(a) shows the line of compressive action of the resultant of the 

concentrated load P and the normal concrete force Cf in the region of pure 

bending, which passes diagonally the shear span, a. If the tip of an inclined 

shear crack is on this diagonal line, the resultant of the concrete forces (P 

and Cf) shown in Fig. 8(b), will also be lying on the line of compressive 

action, this resultant causes a type of splitting of concrete along this line, 

featuring a crack that initiates from the tip of the inclined crack and 

propagates along this line of compressive action toward the area of the 

point of load, P. This can be analytically explained based on the theory of 

elasticity, as will be described in the following section. 

The above consideration constitutes a necessary condition for the 

shear failure of the beam. This condition requires that the summation of the 

moments (about the tip of the inclined crack) of the forces acting on the 

beam portion shown in Fig. 8(b) be equal to zero. 
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Figure 8: Diagonally compressed concrete areas: (a) line of diagonal compressive 

action: (b) Forces on portion of beam where splitting occurs. 

 

  

 The distance of the normal concrete force Cf from the compressed 

fiber in the region of pure bending according to ACI code (ACI 2002) is 

0.5β1c, where β1c = depth of the equivalent rectangular stress block. The 

factor β1= 0.65 to 0.85, depending on the value of concrete strength f
’
c.  

Assuming a mean value β1= 0.72 for all values of f
’
c, the summation of 

forces acting on the portion of beam shown in Fig. 8(a) along x-axis, leads 

to a steel force Tf in the region of pure bending equals Tf equals P (a/d)/(1- 

0.36c/d).  

Also taking into account Eq 4.4 and equating the compressive force 

C by the tensile force T, the following equation is obtained 
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            2

1 tan

2.5 / (1 / )tan (1 0.36 / )
d

c
V

d
V

c d c d c d

ϕ

ϕ

 
 
 

 
  

−

=

− + − −
  (4.10) 

 

A division by sides of Eq. (4.9) and Eq. (4.10), and assuming 1-

0.36c/d �  1- (1/3) c/d yields 

 

                        
2 / 2.5 /

0
1 / 1 /

tan tan
a d c d

c d c d
ϕ ϕ +

−
=

− −
−   (4.11) 

 

 The angle ϕ of the first branch of the critical crack corresponds to 

the positive root of Eq. 4.11. 

 

2.5 Distance of Critical Crack from Support 

 

Since the tip of the first branch of the critical diagonal crack is on 

the line of the compressive action, the distance x that corresponds to the 

first critical diagonal crack from the support can be obtained by 

geometrical relations from the sketches shown in Fig.9 

 

                        

         
/1 tan

1 0.36 /
x c a d
d d c d

ϕ
  
  
   

= − −
−

   (4.12)  
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2.6 Splitting Failure (second branch or critical crack) 

 

The equilibrium of forces acting on the portion of beam shown in 

Fig.9 implies that only normal stress exist along this line of the second 

branch, which represents a group of forces acting in self-equilibrium. Such 

a stress distribution implies a failure due to splitting of concrete in this 

area. 
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        Figure 9: Geometrical representation of critical diagonal cracks. 

    

 A possible arrangement of the concrete forces acting in the region 

of the beam where the splitting of concrete occurs as shown in Fig. 10. The 

resultant of forces P and Cf acts along the line O – O’ that represents the 

direction of the possible splitting line (second branch of the critical crack). 

 

 According to the theory of elasticity [Timoshinko 1995], a splitting 
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failure occur if two equal and opposite forces acts along a chord of a disk. 

A similar distribution of stresses is produced by the four forces acting on 

the circular disk shown in Fig. 10 (b). 
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                    Figure 10: Splitting of concrete in circular disk. 

  

 So, the uniform normal tension stresses applied to the 

circumference of the disk yields the following expression (tensile splitting 

stress): 

 

                                     
22

t

sp

F

dπ
σ =  (4.13) 

 

 Where: 
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tσ : tensile splitting stress. 

F : the resultant of Cf and P. 

spd : diameter of the assumed disk (Cylinder). 

 The direct application of this theoretical model to the case of 

slender beams implies that the distribution of normal stresses along the line 

of the second branch of the critical diagonal crack has a shape similar to the 

one shown in Fig. 11. These stresses compose a group of forces in self-

equilibrium (i.e., forces not balancing any external load). The normal stress 

at the beginning of the second branch is always tensile with a value given 

by 

ϑ

P =  V

P  / s in

ϕ

π
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ϑ +
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--

c rb
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l

ϑ
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Figure 11. Distribution of normal stresses along line of second branch of critical crack. 
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2 /sin

t

cr

P

bl

θ
σ

π
=     (4.14) 

 

Where lcr is the length of second branch of critical diagonal crack, and  θ  is 

the angle between the diagonal line of action and the horizontal direction 

(Figure 11). 

  Equation (4.14) is resulted from Eq. 4.13 by substituting the force 

F by P/sin θ, the diameter dsp of the disk by the length lcr and the unit 

thickness of the disk by the width b of the beam. 

 

      When the value of the normal tensile stress given by Eq. 4.14 

exceeds the splitting tensile strength fct, of concrete, an initial crack forms 

at this area. As the length lcr becomes smaller and therefore the tensile 

stress σt , larger, this crack propagates to the area of the load point, forming 

the second branch of the critical diagonal crack.  

 Taking into account that sin θ = c(1 — 0.5β1)/ lcr and P = total shear 

force V, one can obtain the shear force of the beam, which corresponds to 

the formation of the second branch of the critical diagonal crack, as 

follows: 

 

                      ( )1

1
1 0.5

2
n ct

c
V bd f

d
π β= −               (4.15) 
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Substituting β1 by 0.72, from (4.15) one can obtain a simplified nominal 

shear stress, which corresponds to the formation of the critical diagonal 

crack 

 

 
n

n ct

V c
v f

bd d
= =   (4.16) 

 

The shear force Vn in Eq. 4.15 and the shear stress vn in Eq. 4.16 

represent the ultimate shear force and the ultimate shear stress of a slender 

beam, respectively. Immediately after the formation of the second branch 

of the critical diagonal crack, the shear force Vd of steel bars is significantly 

increased due to a significant increase of the angle ϕ, as can be directly 

derived from Eq. (4.4). This increase in Vd in turn results in a horizontal 

cleavage of the concrete cover along the reinforcement, which eventually 

causes the loss of force Vd. As a result, the whole shear force V is 

transferred to the thin concrete zone above the second branch of the critical 

diagonal crack. This then behaves as a cantilever eventually failing due to 

either shear or more commonly negative bending moment forming the 

well-known pattern of failure. 

It is worth to note that the shear strength of slender beams, as in Eq. 

4.14 shows, depends mainly on the splitting tensile strength of concrete, 

and secondarily on the factors affecting depth of the compression zone, 
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given by Eq. 4.6.    

 

2.7 Size Effect On Shear Failure 

 

 According to the previous analysis, the diagonal shear failure in 

slender beams is due to a splitting of concrete, which takes place in a 

certain region of the beam. In this section it is argued that the problem of 

the size effect on diagonal shear failure can be reduced to the problem of 

size effect on splitting tensile failure. 

Tests of broad size ranges have been conducted on cylindrical disks 

of constant thickness by many researchers [Zararis 1995, Bazant et al. 

1991, Hasegawa et al. 1985], the results confirm the existence of size effect 

on split-tensile failure, and show that up to a certain critical diameter, the 

split-cylinder strength decreases as the diameter increases. 

In the splitting of concrete occurring in slender beams, the tensile 

part of the length lcr of the second branch of the critical diagonal Crack is 

considered to play the role of the diameter in split-cylinder tests. The length 

lcr and its tensile part can be accurately calculated from the relations shown 

in the previous section. 

An approximate estimate of lcr and its tensile part can be further 

derived using geometrical arguments, as shown in Fig 11, where lcr, is 

equal to 0.4a and its tensile part is equal to 0.16 a. Therefore, the size effect 
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on the shear failure of slender beams seems to depend on the size of the 

shear span a. 

  Taking into account that a = (a/d) d, the size effect in beams 

appears to depend not only on the size of the depth d, as it is commonly 

believed, but also on the ratio (a/d). 

Hasegawa et al. [1985] suggested that the nominal split-cylinder 

strength σN of a disk with a diameter D approximately satisfies the relation  

σN =(1.20 - 1.30D) fct, where D in meters, and fct = nominal split-cylinder 

strength of a disk with a diameter of 0.15 m. This relation is valid up to a 

certain critical diameter, after which the split-cylinder strength does not 

decrease any more, but remains about constant at a minimum value. σN = 

0.65 fct Substituting the diameter D in the above relation, with 0.16 a 

(estimated length of the tensile part of lcr) yields σN = (1.20 - 0.20a) fct. 

Therefore, one can consider the factor (1.20 - 0.20a) as the one that 

determines the size effect on the diagonal shear failure of slender beams, 

with a minimum value of 0.65. 

 

Based on this correlation, one can adjust (4.16) to take into account 

the size effect as follows: 
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                  1.2 0.2n
n ct

V a c
v d f

bd d d

 
 
 

= = −    (4.17) 

 

Where 

        1.2 0.2 0.65a d
d

− ≥       (4.18) 

 

3. Shear Strength of SFRC vs. RC Slender Beams 

 

 The previous formulation is applicable for both, the conventional 

RC and the SFRC with the following exceptions: 

1. The presence of steel fibers arrests the crack formation and increases 

the tensile strength (or the modulus of rupture) of SFRC. So the 

depth of the neutral axis (value of c) is shifted upward. This shift is a 

function of the increase in modulus of rupture ∆fr that is also a 

function of the fiber content, Vf and the aspect ratio lf/df. 

 

2. Since the splitting strength of steel fiber reinforced concrete is 

affected by the presence of steel fibers, there is a need to search for 

suitable value of splitting tensile strength of SFRC. 

 

3. The modification for the size effect can be used for SFRC beams 

instead of that given by Eq.4.18 accounting for the fiber index, (will 

be discussed in the next chapter). 
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3.1 c/d ratio 

 

 As mentioned earlier, the presence of steel fibers contributes in 

increasing the tensile strength (modulus of rupture) of SFRC elements with 

small increase in the concrete compressive strength. The fiber contribution 

in the tensile strength is presented by adding a triangular stress distribution 

[Rjoub and Hunaiti 2002] shown in Fig. 12 to the tension zone, with 

maximum value equals ∆fr, given by 

 

                         '0.7 1 0.65 f
r c f

f

l
f f V

d

 
 
 
 
 

∆ = +  (4.19) 

 

As

h

b

d 

ε

fr∆

f'cc

sε

= 0.003

C = 2/3 f'c b c

d - c

c

T = As fy Tf = ∆ fr(d - c) b

Fiber 

contributionDiagram

Strain

Diagram

Stress

+

2

 
           Figure 12: Stress distribution along the x-section of the SFRC beam.  

 

 The summation of forces along x-axis (Fig. 4.8) leads to the 



www.manaraa.com

 57 

 

following equation 

                                0
f

C T T− − =  (4.20) 

Where: 

                               '2   
3 c wC f b c=  

                                   s yT A f=  

                                 
( )

2f

r wf d c b
T

∆ −
=  

Where: 

fT : Tensile force in caused by adding the steel fibers effect. 

f

f

l

d
: Fiber aspect ratio (length to diameter). 

f
V : Fiber volume fraction %. 

 

The substitution of the values of C, T and Tf in Eq. 4.20 yields 

 

               
( )'2

  0
3 2

r w

c w s y

f d c b
f b c A f

∆ −
− − =                                 (4.21) 

But 

              
( )

600s y s s s w

d c
A f A E b d

c
ε ρ

−
= =                                    (4.22) 

 

The Substitution of Eq. 4.22 into Eq. 4.21 gives 
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( ) ( )'2
  600 0

3 2

r w

c w w

f d c b d c
f b c b d

c
ρ

∆ − −
− − =         (4.23)      

                     

That can be written in the following form                   

 

2

' ' ' '

0.75 0.75
1 900 900 0r r

c c c c

f fc c

d df f f f

ρ ρ      
               

∆ ∆
+ + − + =          (4.24) 

 

If   1 '

0.75 r

c

f
K

f

∆
=   , And 2 '

900
c

K
f

ρ
=      

Then the depth of the N.A can be written as Follows 

 

( ) ( )
2

1 2 1 21 0
c c

K K K K
d d

   
   
   

+ + − + =   (4.25) 

 

3.2  Splitting Strength of SFRC 

 

   To express the splitting strength of steel fiber reinforced concrete in 

terms of fiber properties, the experimental splitting tensile strength, fsp of 

seventy-three specimens [Ashour 1992,Wahab 1991,Nima 1991,Ashour et 

al. 1996, Kwak et al. 2002,Marar 2002] are listed in Table 1. The 

specimens have fiber content ranging from 0.5% to 2% and aspect ratio (lf 

/df) from 60 to 127.7. The concrete strength ranged from 19.68 to 101.32 
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MPa. 

  The increase in the splitting strength, ∆fsp caused by the addition of 

the fiber, for the seventy-three beams is calculated and listed in Table 1. 

The ratio ∆fsp /(fsp)ACI where ( '0.5 csp ff = )  is plotted against Vf lf /df and  

shown in Fig. 13. 

  The regression analysis of the plotted data lead to the following 

relationship that accounts for Vf and lf /df. 

 

                       

'0.5 1 0.97
f

spf c f

f

l
f f V

d

 
= +  

 
       (4.26) 
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Figure 13: ∆fsp /(fsp)ACI against Vf lf /df . 
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                   Table 1: Experimental data for splitting strength of SFRC. 

  

Researcher Beam  f'c         (MPa) Vf Lf /df 
fsp ex.   
(MPa) 

2 26.18 0.4 127.7 4.5 

3 28.565 0.7 127.7 4.6 

4 29.73 1 127.7 4.736 

5 24.614 0.4 95.75 3.6 

6 25.23 0.7 95.75 3.88 

7 25.37 1 95.75 4.06 

8 23.78 0.4 63.83 3.11 

9 24.75 0.7 63.38 3.68 

Nima 1991 

10 25.168 1 63.38 4 

A2 22.63 0.5 62.5 3.15 

A3 22 1 62.5 2.6 

A4 19.68 1 62.5 2.5 

A5 20 1 62.5 2.4 

Wahab 1991 

A6 28.48 1 62.5 3.1 

2 80.87 0.75 75 6.07 Ashour et al. 

1993 3 82.32 1.5 75 7.24 

1 92 1 75 6.7 

2 92.6 1 75 6.89 

3 93.7 1 75 6.79 

4 99 0.5 75 8 

5 99.1 0.5 75 8 

6 95.4 0.5 75 9.1 

7 95.83 0.5 75 8.47 

8 95.3 1 75 10.93 

9 95.3 1 75 10.93 

10 97.53 1 75 9.7 

11 100.5 1 75 9.7 

12 96.4 1.5 75 10.2 

13 96.6 1.5 75 10.23 

14 97.1 1.5 75 9.93 

15 101.32 1 75 9.8 

16 94.5 1 75 6.8 

17 93.8 1 75 6.73 

Ashour et al. 

1996 

18 95 1 75 6.63 

2 76.02 0.5 60 5.68 

3 78.48 1 60 6.95 

4 80.09 1.25 60 8.26 

5 84.63 1.5 60 8.93 

6 96.22 1.75 60 9.97 

7 88.97 2 60 10.83 

Marar 2002 

 

8 76.96 0.5 75 6.94 
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Table 1(cont.): Experimental data for splitting strength of SFRC 

Researcher Beam  f'c   (MPa) Vf Lf /df fspex. (MPa) 

9 78.85 1 75 8.14 

10 84.48 1.25 75 9.12 

11 87.4 1.5 75 10.03 

12 89.52 1.75 75 11.16 

13 91.49 2 75 11.74 

14 78.02 0.5 83 7.51 

15 80.95 1 83 8.89 

16 86.21 1.25 83 10.71 

17 89.19 1.5 83 11.5 

18 91.73 1.75 83 12.54 

19 93.56 2 83 13.16 

20 32.66 0.5 60 3.93 

21 34.11 1 60 4.72 

22 36.28 1.25 60 5.35 

23 37.46 1.5 60 5.9 

24 39.27 1.75 60 6.1 

25 39.85 2 60 6.84 

26 33.73 0.5 75 4.12 

27 34.63 1 75 5.24 

28 36.61 1.25 75 6.18 

29 38.31 1.5 75 6.53 

30 39.63 1.75 75 7.15 

31 41.17 2 75 7.87 

32 33.99 0.5 83 4.36 

33 35.26 1 83 5.94 

34 37.09 1.25 83 6.54 

35 39.73 1.5 83 7.07 

36 41.27 1.75 83 7.86 

Marar 2002 

 

37 42.87 2 83 8.33 

FHB3 68.6 0.75 62.5 6.08 

FNB2 30.8 0.5 62.5 3.83 

 

Kwak et al. 

2002 FHB2 62.6 0.5 62.5 5.88 
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4. Shear Strength of Deep Beams 

4.1 Splitting Failure Model for Deep Beams 

 

 As it is shown in the schematic presentation (Fig. 14 and Fig. 15) of 

the failure cracks that occur in deep beams (a/d < 2.5), the second critical 

crack occurs. So, the shear force is resisted by an inclined thrust between 

the load and the reaction, which causes splitting failure in the diagonal strut 

           
L/2

P

P

a

d

 

Figure 14: Typical crack pattern in deep beams.          
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               Figure 15: Distribution of normal stresses along critical crack line. 
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 To calculate the failure shear stress in such beams due to splitting 

force Eq.4.14 can be applied for the case of deep beams, considering that 

sinθ = 0.9 d / lcr, then the shear stress can be calculated as  

                          1.41
n

spfn
V

fv
bd

= =  (4.27)     

  

4.2 Modified Compression Field Theory (MCFT) 

 

Mitchell and Collins [1986] developed the Modified Compression 

Field Theory. The MCFT is a general model for the load-deformation 

behavior of two-dimensional cracked reinforced concrete subjected to 

shear. It models concrete considering concrete stresses in the principal 

directions assumed with reinforcing stresses assumed to be only axial. The 

concrete stress-strain behavior in compression and tension was derived 

originally from tests performed by [Vecchio and Collins, 1986]. 

The key assumption the MFCT uses to simplify is that the principal 

strain directions coincide with the principal stress directions. This 

assumption is confirmed by experimental measurements, which show that 

the principal directions of stress and strain are parallel within ±10. 

The equilibrium conditions for the MCFT is introduced using the 

symmetrical cross section subjected to pure shear as shown Fig.4.12.the 

shear in this section is resisted by the diagonal compressive stresses, f2 in 
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addition to the diagonal tensile stresses, f1.it should be noted that the tensile 

stresses in the diagonally cracked concrete vary in magnitude from zero at 

the crack location to the peak values between the crack as shown in Fig. 16 

(b). 

The average value of the tensile stresses is used when formulating 

the equilibrium equations. From Mohr’s circle shown in Fig. 16 (c), the  

 

 

Figure 16: Eqilibrium conditions of modified compression field theory [Vecchio and 

Collins 1986]. 

 

following relationship for the principal compressive stress, f2, can be 

derived: 
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                  ( )2 1
tan cotf fvθ θ= + −  (4.29) 

Where: 

 

                                          

wb

V
v

jd
=  (4.30) 

  

  The diagonal compressive stresses push apart the flanges of the 

beam while the diagonal tensile stresses pull them together (Fig.16), the 

unbalanced component must be carried by tension in the web 

reinforcement. This equilibrium requirement can be expressed as: 

 

                    ( )
2 2

2 1
sin cosv v

f f fA θ θ= −  (4.31) 

 

Where fv is the average stress in stirrups. Substituting for f2 from Eq.4.29 

gives 

 

       
1

cot cot
v v

w

fA
f bV jd jd

s
θ θ= +  (4.32) 

 

  As can be seen from Eq.4.32, it is similar to ACI equation, which 

consists of two terms, the first is concrete contribution and the second is the 

reinforcement contribution. 

  The unbalanced longitudinal component of the diagonal concrete 

stresses must be equilibrated by tensile stresses in the longitudinal 
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reinforcement, which can be expressed as: 

 

                ( )
2 2

2 1
cos sinsx wl

f f f bA jdθ θ= −          (4.33)  

 

Where fl is the average stresses in the longitudinal reinforcing bars. 

Substituting for f2 from Eq.4.29 in Eq.4.33 gives 

 

                          
1

cotsx wl
f f bA V jdθ= −  (4.34) 

 

   The concrete web acts not only in compression in direction 2, but 

also in tension in direction 1. Therefore, the following average stress-strain 

relationships, based on Vecchio’s experiments [Vecchio and Collins, 

1982], are adopted: 

 

                   

'

2 2

2 ' '
1

2
0.8 170

c

c c

f
f

ε ε

ε ε ε

  
     

= −
+

 (4.35) 

 

                                  1

15001
crf

f
ε

=
+

    (4.36) 

 

Where fcr is the cracking strength of concrete. Figures 17 and 18 

represent the above equations. 

To deal with the local variations, the stresses that occur at a crack 

location will differ from the calculated average values (Fig.19), at low 
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shear values the ability of the crack interface to transmit the shear stress, 

νci, depends on the crack width, ω.  

           

           Figure 17: Compressive stress-strain relationships for cracked concrete. 

                
           

              
                  

         Figure 18: Average stress-strain relationship for concrete in tension. 
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     Figure 19: Transmitting forces across the crack [Vecchio and Collins 1986]. 

 

The limiting value of νci proposed by Vecchio and Collins [1986] is 

                                               

'
0.18

24
0.3

16

c
ci

f
v

a

ω
≤

+
+

  (4.37)                      

    

Where a is the maximum aggregate size in mm. 

 

 

This equation, based on Walraven’s [1981] experiments, was 

performed on various concretes whose cube strengths were 13, 37, and 59 

MPa. Nevertheless, as the aggregate may fracture for high f’c, and for low 

f’c fracture goes around the aggregates. 

 As shown in Fig. 19 (b and c), the two sets of stresses must be statically 
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equivalent. The requirements that the two sets of stresses produce the same 

vertical force and hence to maintain this equality, f1 must be limited to  

 

              ( )1 tan
v

ci yv v

v

A
f f fv

bs
θ= + −  (4.38) 

 

 

Eq.4.38 requires an estimation of the crack width, taken to be the 

crack spacing multiplied by the principal tensile strain, ε1 as follows 

 

 

                                                 1 ms θω ε=   (4.39) 

 

      Where:                                

                                  
1

sin cos
m

mx mv

s

s s

θ

θ θ
=

+

 (4.40) 

Finally, crack spacing, smx and smv are estimated using the formulas given 

by the CEBFIP Model Code (1990). 

 

                             12 0.25
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s d
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 
 
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                            12 0.25
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s d
s c k

ρ

 
 
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= + +  (4.42) 

 

Where db = bar diameter, 
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c = distance to reinforcement, Fig.20. 

s = bar spacing, 

ρy = Ay/(bws), 

ρx = Ax/Ac, and 

k1 = 0.40 for deformed bars or 0.8 for plain bars. 

 

4.2.1 Shear Strength of SFRC Deep Beams Using MCFT 

 

 In order to predict shear strength of SFRC deep beams using the 

modified compression field theory, a modification regarding shear stress 

transmitted across cracks, and the type of tensile failure is done. 

 

                    
 
Figure 20: Parameters influencing crack spacing (Collins and Mitchell, 1997) 
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4.2.2 Transmitted Shear Stress across the crack 

 

 As shown in the previous sections the tensile stress, f1 is limited to 

the value of vci, while with the presence of steel fiber the shear stress 

transmitted across the crack is increased due to the interfacial shear stress 

of steel fiber.  

  The following interfacial shear stress equation for SFRC is adopted 

from Narayanan and Darwish [1987]. 

 

                                 0.41b Fv τ=   (4.43) 

 

Where: 

τ  = Average fiber matrix interfacial stress taken as 4.15 MPa 

F = Fiber factor = (Lf /Df) Vf df 

Df = Fiber diameter, mm 

Lf = Fiber length, mm 

df =Bond factor equals 0.50 for round fibers, 0.75 for crimped fibers , and          

1.00 for indented fibers. 

Adding vb to Eq.4.37 gives 
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 (4.44) 
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Where: cifv is the shear stress transmitted across the cracks for steel fiber 

reinforced concrete.  

 

4.2.3 Tensile Strength  

 

 In the case of deep beams, the formation of cracks is affected by the 

splitting strength (as shown in section 4.4.1) rather than the cracking 

strength of concrete fcr, by introducing the splitting strength of SFRC 

Eq.4.26 into Eq.4.36 the tensile stress f1 becomes 

 

                         1

15001

spff
f

ε
=

+
  (4.45) 
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Verification of the Proposed Model  
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Verification of the Proposed Model 
 

 

 
1. General 
 

 

In order to verify the capability of the proposed equation in predicting the 

shear strength of SFRC beams, one hundred beams are analyzed using the 

derived equation in chapter four. The analyzed beams were tested 

experimentally by several researchers. Table 2 lists the number, geometry 

and general properties of the tested beams. The strength of the tested beams 

ranged from normal to high strength concrete (from 33 to 101 MPa), with 

aspect ratio ranging from 62.5 to 133, and volume 

 

 Table 2: Summary of previous research. 

 

fractions from 0.22% to 1.5%. They are reinforced by conventional steel 

bars of 0.37% to 3.7%, the beams are varying from deep to slender of shear 

span to depth ratios ranging from 1 to 6. 

Researcher 
No. of 

Beams 
a/d 

f ’c 

MPa 
ρρρρ % Vf % 

Fibre 

Type 

Batson et al. 

[1972] 
36 3.2 - 5 33 - 40 3.1 0.2 – 0.9 

Crimped 

end 

Straight Darwish et 

al. [1987] 

[1987] 

25 2 - 3 39 - 80 2 – 3.7 0.25 - 3 Crimped 

Ashour et 

al. [1992] 

[1992] 

16 1 - 6 92 - 101 0.4 - 4.6 0.5 - 1.5 Hooked 

Ghosheh 

[1995] 
14 2 - 3.5 33 - 43 2.28 0.4 – 1.3 Hooked 

Kwak 

et al. [2002] 
9 2 - 4 30– 69 2 0.5 – 0.8 Hooked 
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More details regarding the properties of the tested beams are 

reported in Table 3. The table shows the concrete compressive strength, the 

beams dimensions, and the percentage of the longitudinal steel 

reinforcement, the fiber properties, and the experimental shear capacity for 

each tested beams. 

 

2. Analysis of slender beams  

 

Among the beams listed in Table 2 the slender beams (where a/d 

>2.5) are analyzed using equation 4.16, the regression analysis is carried 

out to account for the size effect and the span to depth ratio, and reported in 

Eq. (5.1). The Fig. 21 shows the size effect on SFRC beams capacity. 
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Figure 21: Size effect on SFRC beams shear strength capacity. 
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Table 3:Geometry and properties of the analyzed beams 

f'c b d vex Researcher Beam 
Mpa mm mm 

p% a/d Vf% lf/df 
MPa 

B3 33.2 102 126 3.1 3.2 0.22 100 2.46 
C1 33.2 102 126 3.1 3.4 0.22 100 2.46 
C2 33.2 102 126 3.1 3.4 0.22 100 2.17 
C3 33.2 102 126 3.1 4 0.22 100 1.96 
D2 33.2 102 126 3.1 4 0.22 100 2.3 
D3 33.2 102 126 3.1 4 0.22 100 2.18 
E3 40.2 102 126 3.1 4 0.44 100 2.57 
F1 40.2 102 126 3.1 4 0.44 100 2.58 
F2 40.2 102 126 3.1 4 0.44 100 2.43 
F3 40.2 102 126 3.1 4 0.44 100 2.58 
G1 33.2 102 126 3.1 4.2 0.22 100 2.21 
G3 33.2 102 126 3.1 4.2 0.22 100 2.1 
L1 33.2 102 126 3.1 4.2 0.22 70 2.35 
L2 33.2 102 126 3.1 4.2 0.22 70 2.35 
L3 33.2 102 126 3.1 4.2 0.22 70 2.58 
M1 33.2 102 126 3.1 4.2 0.22 70 2.01 
M2 33.2 102 126 3.1 4.2 0.22 70 2.11 
M3 33.2 102 126 3.1 4.3 0.22 70 2 
N1 33.2 102 126 3.1 4.3 0.22 70 1.9 
N2 33.2 102 126 3.1 4.4 0.22 70 2.1 
O1 40.2 102 126 3.1 4.4 0.44 70 2.45 
P1 40.2 102 126 3.1 4.4 0.44 70 2.63 
P2 40.2 102 126 3.1 4.4 0.44 70 2.53 
P3 40.2 102 126 3.1 4.4 0.44 70 2.53 
R1 39.7 102 126 3.1 4.6 0.88 70 2.86 
R2 39.7 102 126 3.1 4.8 0.88 70 2.67 
S1 39.7 102 126 3.1 4.8 0.88 70 2.58 
X1 33.2 102 126 3.1 4.8 0.22 70 1.89 
X2 33.2 102 126 3.1 4.8 0.22 70 1.82 
X3 33.2 102 126 3.1 4.8 0.22 70 2.03 
H1 39.7 102 126 3.1 4.8 0.88 70 2.17 
H2 39.7 102 126 3.1 4.8 0.88 70 2.14 
H3 39.7 102 126 3.1 4.8 0.88 70 2.1 
11 39.7 102 126 3.1 4.8 0.88 70 2.19 
12 39.7 102 126 3.1 4.8 0.88 70 2.19 

Batson et al. 

1972 

13 39.7 102 126 3.1 5 0.88 70 2.06 
SF2 61.7 85 130 2 2.5 0.25 100 2.67 
SF5 39.9 85 130 2 2.5 0.25 100 2.07 
B12 61.7 85 130 2 2.5 0.5 133 3.69 
B15 67.2 85 130 2 2.5 1 133 4.42 
SF3 61.7 85 130 2 3 0.25 100 2.77 
SF6 39.2 85 130 2 3 0.25 100 1.94 
B1 61.7 85 130 2 3 0.5 133 3.23 
B30 76.7 85 130 2 3 1.5 100 3.64 
B4 79.5 85 130 2 3 2 100 3.74 
B5 77.2 85 130 2 3 2.5 100 3.76 
B6 75.8 85 130 2 3 3 100 3.85 
B7 42.3 85 130 2 3 0.5 133 1.97 
B9 41.4 85 130 2 3 1 100 2.97 
B17 55.7 85 130 3.7 3 0.5 133 2.96 
B19 42.3 85 130 3.7 3 0.5 133 2.24 
B23 71.9 85 130 3.7 3 1 133 4.37 
B27 67 85 130 3.7 3 1.5 100 4.46 
SF1 61.7 85 130 2 2 0.25 100 2.96 
SF4 39.9 85 130 2 2 0.25 100 2.41 
B11 61.7 85 130 2 2 0.5 133 4.62 
B14 67.2 85 130 2 2 1 133 5.57 

Darwish et 

al. 1987 

B28 59.3 85 130 2 2 0.5 100 5.46 
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Table 3 (cont.): Geometry and properties of the analyzed beams. 

f'c b d vex Researcher Beam 
MPa mm mm 

p% a/d Vf% lf/df 
MPa 

B29 60 85 130 2 2 1 100 6.77 

B30 67 85 130 2 2 1.5 100 7.15 
Darwish et 

al. 1987 

B31 55.9 85 130 2 2 2 100 6.3 

B41L 92.6 125 215 0.37 4 1.00 75.00 0.89 

B61L 93.7 125 215 0.37 6 1.00 75.00 0.56 

B40.5A 95.4 125 215 2.84 4 0.50 75.00 2.27 

B60.5A 95.83 125 215 2.84 6 0.50 75.00 1.95 

B41A 97.53 125 215 2.84 4 1.00 75.00 3.17 

B61A 100.5 125 215 2.84 6 1.00 75.00 1.96 

B41.5A 97.1 125 215 2.84 4 1.50 75.00 3.51 

B61.5A 101.32 125 215 2.84 6 1.50 75.00 1.98 

B61M 95 125 215 4.58 6 1.00 75.00 2.93 

B10.5A 99 125 215 2.84 1 0.5 75 9.09 

B20.5A 99.1 125 215 2.84 2 0.5 75 4.82 

B11A 96.3 125 215 2.84 1 1 75 12.74 

B21A 95.3 125 215 2.84 2 1 75 6.06 

B11.5A 96.4 125 215 2.84 1 1.5 75 13.95 

B21.5A 96.6 125 215 2.84 2 1.5 75 7.21 

Ashour et 

al.1992 

B21M 94.5 125 215 4.58 2 1 75 6.73 

B6 40.11 150 175 2.28 2.5 0.375 75 1.97 

B7 42.67 150 175 2.28 2.5 0.5 75 2.95 

B8 33.5 150 175 2.28 2.5 0.75 75 2.86 

B9 40.47 150 175 2.28 2.5 1 75 3.03 

B11 40.85 150 175 2.28 3 0.75 75 2.32 

B12 33.5 150 175 2.28 3 1 75 2.70 

B13 40.47 150 175 2.28 3 1.25 75 3.09 

B15 40.11 150 175 2.28 3.5 0.5 75 1.71 

B16 38.64 150 175 2.28 3.5 0.75 75 2.23 

B17 41.42 150 175 2.28 3.5 1 75 1.83 

B18 35.91 150 175 2.28 3.5 1.25 75 1.94 

B2 39.7 150 175 2.28 2 0.5 75 3.14 

B3 38.64 150 175 2.28 2 0.7 75 3.51 

Ghosheh 

1995 

B4 41.42 150 175 2.28 2 1 75 3.84 

FHB2-3 63.8 125 212 2 3 0.50 62.50 3.09 

FHB3-3 68.6 125 212 2 3 0.75 62.50 3.4 

FHB2-4 63.8 125 212 2 4 0.50 62.50 2.41 

FHB3-4 68.6 125 212 2 4 0.75 62.50 2.74 

FNB2-3 30.8 125 212 2 3 0.50 62.50 2.55 

FNB2-4 30.8 125 212 2 4 0.50 62.50 2 

FHB2-2 63.8 125 212 2 2 0.5 100 5.09 

FHB3-2 68.6 125 212 2 2 0.75 100 5.44 

Kwak et al. 

2002 

FNB2-2 30.8 125 212 2 2 0.5 100 4.04 
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1.177 0.554
a

SE RI d
d

 
 
 

= −    (5.1) 

Where:  f

f
f

L
RI V

d
=  

So introducing the size effect given by Eq. (5.1) to Eq. (4.27) yields 

Eq. (5.2) that gives better prediction for shear strength of SFRC beams. 

 

1.177 0.554n
n

spf
w

a
RI d

d
V c f
b d d

v
 
  
 

== −   (5.2) 

 

 The analysis of 79 beams is carried out using Eq. 5.2 and the 

predicted shear strength are compared with the experimental values and 

reported in Table 4. The table shows that the average and coefficient of 

variation for the ratio vex  / vcal. for all the tested beams are 1.02 and 0.17; 

respectively. 

Also the experimental shear strength is plotted against the predicted 

strengths in Fig. 22. 
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     Table 4:Slender beams: Experimental to calculated shear strength Ratio (Eq.5.2) 

Researcher Beam a/d RI vex (MPa ) vcal (MPa ) vex/vcal 
B3 3.20 0.02 2.46 2.25 1.09 
C1 3.40 0.02 2.46 2.24 1.10 
C2 3.40 0.02 2.17 2.24 0.97 
C3 4.00 0.02 1.96 2.22 0.88 
D2 4.00 0.02 2.30 2.22 1.03 
D3 4.00 0.04 2.18 2.22 0.98 
E3 4.00 0.04 2.57 2.57 1.00 
F1 4.00 0.04 2.58 2.57 1.00 
F2 4.00 0.04 2.43 2.57 0.95 
F3 4.00 0.02 2.58 2.57 1.00 
G1 4.20 0.02 2.21 2.22 1.00 
G3 4.20 0.01 2.10 2.22 0.95 
L1 4.20 0.01 2.35 2.14 1.10 
L2 4.20 0.01 2.35 2.14 1.10 
L3 4.20 0.01 2.58 2.14 1.21 
M1 4.20 0.01 2.01 2.14 0.94 
M2 4.20 0.01 2.11 2.14 0.99 
M3 4.30 0.01 2.00 2.13 0.94 
N1 4.30 0.01 1.90 2.13 0.89 
N2 4.40 0.03 2.10 2.13 0.99 
O1 4.40 0.03 2.45 2.40 1.02 
P1 4.40 0.03 2.63 2.40 1.10 
P2 4.40 0.03 2.53 2.40 1.05 
P3 4.40 0.05 2.53 2.40 1.05 
R1 4.60 0.05 2.86 2.67 1.07 
R2 4.80 0.05 2.67 2.65 1.01 
S1 4.80 0.01 2.58 2.65 0.98 
X1 4.80 0.01 1.89 2.12 0.89 
X2 4.80 0.01 1.82 2.12 0.86 
X3 4.80 0.05 2.03 2.12 0.96 
H1 4.80 0.05 2.17 2.65 0.82 
H2 4.80 0.05 2.14 2.65 0.81 
H3 4.80 0.05 2.10 2.65 0.79 
11 4.80 0.05 2.19 2.65 0.83 
12 4.80 0.05 2.19 2.65 0.83 
13 5.00 0.10 2.06 2.62 0.79 

MEAN 0.97 

Batson et al. 

1972 

STANDARD DEVIATION 0.10 

SF2 2.50 0.05 2.67 2.22 1.20 
SF5 2.50 0.10 2.07 2.08 0.99 
B12 2.50 0.02 3.69 2.76 1.33 
B15 2.50 0.01 4.42 3.49 1.26 
SF3 3.00 0.05 2.77 2.20 1.26 
SF6 3.00 0.12 1.94 2.06 0.94 
B1 3.00 0.16 3.23 2.70 1.20 
B30 3.00 0.20 3.64 3.48 1.05 
B4 3.00 0.24 3.74 3.69 1.01 
B5 3.00 0.04 3.76 3.69 1.02 
B6 3.00 0.06 3.85 3.52 1.09 
B7 3.00 0.08 1.97 2.56 0.77 
B9 3.00 0.07 2.97 2.85 1.04 
B17 3.00 0.19 2.96 3.27 0.91 
B19 3.00 0.21 2.24 3.10 0.72 
B23 3.00 0.02 4.37 4.12 1.06 
B27 3.00 0.02 4.46 4.19 1.06 

MEAN 1.05 

Darwish et al. 

1987 

STANDARD DEVIATION 0.17 
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Table 4(cont.): Slender beams: Experimental to calculated shear strength Ratio 

(Eq.5.2) 

Researcher Beam a/d RI vex (MPa ) vcal (MPa ) vex/vcal 
B41L 4 0.01 0.89 1.20 0.74 
B61L 6 0.01 0.56 0.93 0.60 

B40.5A 4 0.05 2.27 2.59 0.88 
B60.5A 6 0.05 1.95 2.36 0.83 
B41A 4 0.10 3.17 2.71 1.17 
B61A 6 0.10 1.96 2.12 0.92 

B41.5A 4 0.14 3.51 2.57 1.36 
B61.5A 6 0.15 1.98 1.49 1.33 
B61M 6 0.15 2.93 2.49 1.18 

MEAN 1.00 

Ashour 

et.al.1992 

STANDARD DEVIATION 0.27 

B6 2.50 0.03 1.97 2.19 0.90 
B7 2.50 0.05 2.95 2.32 1.27 
B8 2.50 0.04 2.86 2.42 1.18 
B9 2.50 0.05 3.03 2.68 1.13 
B11 3.00 0.06 2.32 2.44 0.95 
B12 3.00 0.03 2.70 2.50 1.08 
B13 3.00 0.04 3.09 2.70 1.14 
B15 3.50 0.05 1.71 2.22 0.77 
B16 3.50 0.06 2.23 2.35 0.95 
B17 3.50 0.02 1.83 2.49 0.73 
B18 3.50 0.01 1.94 2.51 0.78 

MEAN 0.99 

Ghosheh 

1995 

STANDARD DEVIATION 0.18 

FHB2-3 3 0.31 3.09 2.21 1.40 
FHB3-3 3 0.47 3.4 2.36 1.44 
FHB2-4 4 0.31 2.41 2.13 1.13 
FHB3-4 4 0.47 2.74 2.23 1.23 
FNB2-3 3 0.31 2.55 1.97 1.29 
FNB2-4 4 0.31 2 1.90 1.05 

MEAN 1.26 

 Kwak et al. 

2002 

STANDARD DEVIATION 0.15 

MEAN FOR ALL TESTS 1.02 

STANDARD DEVIATION FOR ALL TESTS 0.17 
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     Figure 22:Experimental to predicted shear strength  (Eq. 5.2) 
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2.1 Comparison of Shear Predictions With Other Research Works: 

 

 The shear strength using the proposed Eq. (5.2) is compared with 

those obtained using different equations found in the literature. And 

reported in Table 5.the table shows the result of analysis of beams using 

Sharma [1985], Mansur et al. [1986], Narayanan and Darwish [1987], 

Ashour et al [1992], Kwak et al. [2002]. 

 Table 6 Shows the result of the summarizes the mean and C.O.V for 

vex  / vcal  using the equations of the five research works and compares the 

results with those obtained from Eq. 5.2.   

Table 5: Summary of the average and C.O.V of vex  / vcal using different equations. 

Proposed Sharma  Mansur et al.  Darwish et al. Ashour et al. Kwak et al. 

Researcher

Mean C.O.V Mean C.O.V Mean C.O.V Mean C.O.V Mean C.O.V Mean C.O.V 

Batson e. 

al. 
0.97 0.10 1.04 0.09 1.16 0.28 1.37 0.16 1.45 0.14 1.20 0.13 

Darwish et 

al. 
1.05 0.17 1.02 0.19 0.71 0.28 0.90 0.22 1.07 0.23 0.75 0.12 

Ashour et 

al. 
1.00 0.27 0.61 0.27 0.41 0.19 0.59 0.24 0.84 0.22 0.56 0.21 

 Ghosheh  0.99 0.18 0.97 0.19 0.82 0.21 0.92 0.18 1.07 0.19 0.77 0.1 

 Kwak et 

al. 
1.26 0.15 0.97 0.12 1.06 0.19 1.21 0.13 1.43 0.19 1.01 0.06 

All Tests 1.02 0.17 0.97 0.21 0.92 0.36 1.11 0.33 1.25 0.29 0.96 0.28 
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      Table 6: Experimental to calculated shear strength for different researchers. 

vex / vcal   

Researcher Beam a/d   vex     

(MPa) Eq 5.2 
Sharma 

1985 
Mansur et 

al. 1986 

Narayanan 

and 

Darwish 

1987 

Ashour et 

al. 1992 
Kwak et 

al. 2002 

B3 3.20 2.46 1.09 1.08 1.43 1.43 1.53 1.23 
C1 3.40 2.46 1.10 1.10 1.44 1.47 1.56 1.31 
C2 3.40 2.17 0.97 0.97 1.27 1.30 1.37 1.16 
C3 4.00 1.96 0.88 0.91 1.16 1.26 1.31 1.11 
D2 4.00 2.30 1.03 1.07 1.36 1.47 1.54 1.30 
D3 4.00 2.18 0.98 1.02 1.29 1.40 1.46 1.24 
E3 4.00 2.57 1.00 1.09 1.01 1.36 1.48 1.21 
F1 4.00 2.58 1.00 1.09 1.01 1.36 1.48 1.21 
F2 4.00 2.43 0.95 1.03 0.96 1.28 1.40 1.14 
F3 4.00 2.58 1.00 1.09 1.01 1.36 1.48 1.21 
G1 4.20 2.21 1.00 1.04 1.31 1.44 1.50 1.27 
G3 4.20 2.10 0.95 0.99 1.25 1.37 1.43 1.20 
L1 4.20 2.35 1.10 1.11 1.57 1.61 1.65 1.40 
L2 4.20 2.35 1.10 1.11 1.57 1.61 1.65 1.40 
L3 4.20 2.58 1.21 1.22 1.73 1.77 1.81 1.54 
M1 4.20 2.01 0.94 0.95 1.35 1.38 1.41 1.20 
M2 4.20 2.11 0.99 1.00 1.41 1.44 1.48 1.26 
M3 4.30 2.00 0.94 0.95 1.34 1.38 1.41 1.20 
N1 4.30 1.90 0.89 0.90 1.28 1.31 1.34 1.14 
N2 4.40 2.10 0.99 1.00 1.41 1.46 1.49 1.26 
O1 4.40 2.45 1.02 1.06 1.16 1.44 1.54 1.25 
P1 4.40 2.63 1.10 1.14 1.25 1.54 1.65 1.34 
P2 4.40 2.53 1.05 1.10 1.20 1.49 1.59 1.29 
P3 4.40 2.53 1.05 1.10 1.20 1.49 1.59 1.29 
R1 4.60 2.86 1.07 1.26 0.93 1.45 1.62 1.29 
R2 4.80 2.67 1.01 1.19 0.87 1.37 1.53 1.22 
S1 4.80 2.58 0.98 1.15 0.84 1.32 1.48 1.18 
X1 4.80 1.89 0.89 0.92 1.28 1.36 1.38 1.16 
X2 4.80 1.82 0.86 0.89 1.23 1.31 1.33 1.11 
X3 4.80 2.03 0.96 0.99 1.37 1.46 1.49 1.24 
H1 4.80 2.17 0.82 0.97 0.71 1.11 1.24 0.99 
H2 4.80 2.14 0.81 0.95 0.70 1.09 1.23 0.98 
H3 4.80 2.10 0.79 0.94 0.69 1.07 1.20 0.96 
11 4.80 2.19 0.83 0.98 0.72 1.12 1.26 1.00 
12 4.80 2.19 0.83 0.98 0.72 1.12 1.26 1.00 

Batson et. 

al. 1972 

13 5.00 2.06 0.79 0.93 0.67 1.07 1.20 0.95 
SF2 2.50 2.67 1.20 0.81 1.12 1.16 1.32 0.75 
SF5 2.50 2.07 0.99 0.78 1.07 1.05 1.15 0.71 
B12 2.50 3.69 1.33 1.12 0.92 1.19 1.42 0.86 
B15 2.50 4.42 1.26 1.29 0.64 1.00 1.23 0.81 
SF3 3.00 2.77 1.26 0.88 1.18 1.26 1.46 0.95 
SF6 3.00 1.94 0.94 0.77 1.02 1.05 1.15 0.81 
B1 3.00 3.23 1.20 1.03 0.81 1.08 1.32 0.90 

B30 3.00 3.64 1.05 1.04 0.45 0.76 0.99 0.70 
B4 3.00 3.74 1.01 1.05 0.36 0.65 0.86 0.63 
B5 3.00 3.76 1.02 1.07 0.30 0.57 0.75 0.57 
B6 3.00 3.85 1.09 1.11 0.26 0.52 0.68 0.53 
B7 3.00 1.97 0.77 0.76 0.59 0.73 0.87 0.63 

Darwish et 

al. 1987 

B9 3.00 2.97 1.04 1.15 0.68 0.90 1.10 0.82 
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     Table 6(cont.): Experimental to calculated shear strength for different researchers. 

vex / vcal   

Researcher Beam a/d  vex           

(MPa) Eq 5.2 
Sharma 

1985 
Mansur et 

al. 1986 

Narayanan 

and 

Darwish 

1987 

Ashour et 

al. 1992 
Kwak et 

al. 2002 

B17 3.00 2.96 0.91 0.99 0.76 0.88 1.01 0.77 
B19 3.00 2.24 0.72 0.86 0.66 0.71 0.81 0.64 
B23 3.00 4.37 1.06 1.29 0.61 0.90 1.04 0.83 

Darwish et 

al. 1987 

B27 3.00 4.46 1.06 1.36 0.58 0.88 1.01 0.83 
B41L 4 0.89 0.74 0.25 0.17 0.28 0.62 0.31 
B61L 6 0.56 0.60 0.17 0.11 0.18 0.44 0.20 

B40.5A 4 2.27 0.88 0.62 0.65 0.76 0.96 0.67 
B60.5A 6 1.95 0.83 0.59 0.56 0.69 0.94 0.62 
B41A 4 3.17 1.17 0.86 0.59 0.85 1.10 0.79 
B61A 6 1.96 0.92 0.58 0.36 0.54 0.77 0.51 

B41.5A 4 3.51 1.36 0.96 0.48 0.79 1.04 0.77 
B61.5A 6 1.98 1.33 0.58 0.27 0.46 0.66 0.45 

Ashour et 

al.1992 

B61M 6 2.93 1.18 0.89 0.55 0.78 1.00 0.73 
B6 2.50 1.97 0.90 0.74 0.96 0.93 1.03 0.65 
B7 2.50 2.95 1.27 1.08 1.22 1.26 1.41 0.89 
B8 2.50 2.86 1.18 1.18 1.05 1.12 1.27 0.85 
B9 2.50 3.03 1.13 1.14 0.85 1.01 1.16 0.78 

B11 3.00 2.32 0.95 0.91 0.79 0.91 1.05 0.77 
B12 3.00 2.70 1.08 1.17 0.84 0.97 1.14 0.86 
B13 3.00 3.09 1.14 1.21 0.75 0.95 1.13 0.86 
B15 3.50 1.71 0.77 0.70 0.74 0.82 0.93 0.74 
B16 3.50 2.23 0.95 0.93 0.78 0.92 1.08 0.86 
B17 3.50 1.83 0.73 0.74 0.51 0.65 0.78 0.62 

Ghosheh 

1995 

B18 3.50 1.94 0.78 0.84 0.50 0.63 0.77 0.63 
FHB2-3 3 3.09 1.40 0.97 1.17 1.31 1.54 1.01 
FHB3-3 3 3.4 1.44 1.03 1.01 1.25 1.51 0.99 
FHB2-4 4 2.41 1.13 0.81 0.92 1.09 1.32 0.94 
FHB3-4 4 2.74 1.23 0.89 0.82 1.06 1.34 0.95 
FNB2-3 3 2.55 1.29 1.15 1.36 1.38 1.54 1.12 

Kwak et al. 

2002 

FNB2-4 4 2 1.05 0.97 1.09 1.17 1.33 1.04 

 

 The experimental shear strength is plotted against the values obtained 

shear using the proposed equation and compared with those obtained by 

other researchers, and shown in the Figures (23, 24, 25, 26 and 27). 
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Figure 23: Shear strength: Sharma [1986] vs. the proposed equations (a) proposed 

equation (b) Sharma equation.  
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Figure 24: Shear strength: Mansur et al. [1986] vs. proposed equations (a) proposed 

equation (b) Mansur et al. equation.  
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                (b) 

Figure 25: Shear strength: Narayanan and Darwish [1986] vs. proposed equations (a) 

proposed equation (b) Narayanan and Darwish equation.  
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Figure 26: Shear strength:  Ashour et al. [1992] vs. proposed equations (a) proposed 

equation (b) Ashour et al. equation.  
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                (b) 

Figure 27: Shear strength: Kwak et al. [2002] and the proposed equations (a) proposed 

equation (b) Kwak et al. equation.  

 



www.manaraa.com

�� 

3. Analysis of Deep Beams 

 

 Twenty-one deep beams (a/d <2.5) listed in Table 5.1 and Table 5.2 

are analyzed using the proposed splitting failure model (second critical 

crack) as follows. 

3.1 Splitting Failure Model 

 

 The proposed equation for deep beams Eq.4.27 is used in the 

analysis of twenty-one deep beams listed in Table 2. A regression analysis 

is done to include the size effect factor, produced and the following 

equation is obtained as a modification for Eq.4.27. 

 

                 

4

1.41f sp

a
A B RI d

d
fv +
  
  

  
=  (5.3) 

Where: 

A and B: constants equals 0.507 and 0.0026; respectively. 

 

The analysis of beams is carried out using Eq.5.3 and the predicted 

shear strengths are compared with the experimental values and reported in 

Table 7. The average and coefficient of variation o all the tested beams for 
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vex  / vcal. are found 1.02 and 0.17; respectively. The experimental shear 

strength is plotted against the predicted values and shown in Fig. 28. 

Table 7: Deep beam experimental to calculated shear strength using Eq.5.3 

Researcher 
Beam 

Name 
a/d RI vex (MPa) vcal.(MPa) vex / vcal. 

SF1 2.00 0.25 2.96 3.51 0.84 
SF4 2.00 0.25 2.41 2.82 0.85 
B11 2.00 0.67 4.62 4.71 0.98 
B14 2.00 1.33 5.57 7.00 0.80 
B28 2.00 0.50 5.46 4.14 1.32 
B29 2.00 1.00 6.77 5.62 1.20 
B30 2.00 1.50 7.15 7.54 0.95 

Darwish et al. 

1987 

B31 2.00 2.00 6.30 8.40 0.75 
B10.5A 1.00 0.38 9.09 6.82 1.33 
B20.5A 2.00 0.38 4.82 4.95 0.97 
B11A 1.00 0.75 12.74 10.97 1.16 
B21A 2.00 0.75 6.06 6.28 0.96 

B11.5A 1.00 1.13 13.95 16.27 0.86 
B21.5A 2.00 1.13 7.21 7.83 0.92 

Ashour et 

al.1992 

B21M 2.00 0.75 6.73 6.26 1.08 
b2 2.00 0.38 3.14 3.12 1.01 
b3 2.00 0.53 3.51 3.43 1.02 

 Ghosheh 

1995 
b4 2.00 0.75 3.84 4.11 0.94 

FHB2-2 2.00 0.50 5.09 4.35 1.17 
FHB3-2 2.00 0.75 5.44 5.33 1.02 

 Kwak et al. 

2002 
FNB2-2 2.00 0.50 4.04 3.03 1.34 

MEAN FOR ALL TESTS 1.02 

STANDARD DEVIATION FOR ALL TESTS 0.17 
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       Figure 28: Deep beams experimental to calculated shear strength using equation 

5.3. 
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3.2 Modified Compression Field Theory 

 

 The MCFT is developed to be a rational theory that predicts the stress 

strain responses of the cracked shear or torsion in reinforced concrete 

elements. In this thesis, a VISUAL BAISC program that accounts for the 

change in concrete properties caused by adding steel fibers is developed  

The analysis of deep beams is carried out using the mentioned 

program to determine the shear strength. The obtained values are compared 

with the corresponding experimental values and reported in table 8.The 

listed result show that the average and coefficient of variation for the ratio 

vex  / vcal. for the tested deep beams are 1.13 and 0.37; respectively. Also the 

experimental shear strength is plotted against the predicted value in Fig. 29. 
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Figure 29: Experimental to calculated shear strength using MCFT. 
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Table 8: Deep beams: the ratio of experimental to calculated shear strength using 

MCFT. 

Researcher 
Beam 

Name 
a/d RI vex ( MPa ) vcal.( MPa ) vex/vcal 

SF1 2.00 0.25 2.96 3.88 0.76 

SF4 2.00 0.25 2.41 3.12 0.77 

B11 2.00 0.67 4.62 5.02 0.92 

B14 2.00 1.33 5.57 6.19 0.90 

B28 2.00 0.50 5.46 4.53 1.20 

B29 2.00 1.00 6.77 5.53 1.22 

B30 2.00 1.50 7.15 6.31 1.13 

Darwish et al. 

1987 

B31 2.00 2.00 6.30 6.83 0.92 

B10.5A 1.00 0.38 9.09 5.39 1.69 

B20.5A 2.00 0.38 4.82 5.39 0.89 

B11A 1.00 0.75 12.74 6.20 2.05 

B21A 2.00 0.75 6.06 6.17 0.98 

B11.5A 1.00 1.13 13.95 6.84 2.04 

B21.5A 2.00 1.13 7.21 6.85 1.05 

Ashour et 

al.1992 

B21M 2.00 0.75 6.73 6.21 1.08 

b2 2.00 0.38 3.14 3.41 0.92 

b3 2.00 0.53 3.51 3.72 0.94 Ghosheh 1995 

b4 2.00 0.75 3.84 4.47 0.86 

FHB2-2 2.00 0.50 5.09 4.48 4.70 

FHB3-2 2.00 0.75 5.44 5.48 5.39 
Kwak et al. 

2002 

FNB2-2 2.00 0.50 4.04 3.11 3.27 

MEAN FOR ALL TESTS 1.13 

STANDARD DEVIATION FOR ALL TESTS 0.37 

 

 

4. Comparison of Shear Prediction With Other Work: 

 

 The shear strength using the proposed equation Eq. (5.3) compared 

with these obtained using several equation suggested by difference 

researchers and the reported in Table 9.the table shows the result of 

analysis of beams using Sharma [1986], Mansur et al. [1986] and Kwak et 

al. [2002].  
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Table 9: Experimental to calculated shear strength for different researchers. 

 

vex / vcal   
Researcher Beam a/d   vex       

( MPa ) Eq 5.3 MCFT 
Sharma 

1985 

Mansur 

et al. 

1986 

Kwak et 

al. 2002 

SF1 2.00 2.96 0.84 0.76 0.85 1.25 0.65 
SF4 2.00 2.41 0.85 0.77 0.86 1.25 0.65 
B11 2.00 4.62 0.98 0.92 1.33 1.18 0.87 
B14 2.00 5.57 0.80 0.90 1.53 0.84 0.84 
B28 2.00 5.46 1.32 1.20 1.60 1.69 1.10 
B29 2.00 6.77 1.20 1.22 1.97 1.33 1.16 
B30 2.00 7.15 0.95 1.13 1.97 0.98 1.04 

Darwish et 

al. 1987 

B31 2.00 6.30 0.75 0.92 1.90 0.74 0.87 
B10.5A 1.00 9.09 1.33 1.69 1.73 2.36 0.63 
B20.5A 2.00 4.82 0.97 0.89 1.09 1.34 0.74 
B11A 1.00 12.74 1.16 2.05 2.47 2.29 0.84 
B21A 2.00 6.06 0.96 0.98 1.40 1.15 0.86 

B11.5A 1.00 13.95 0.86 2.04 2.70 1.91 0.87 
B21.5A 2.00 7.21 0.92 1.05 1.66 1.02 0.93 

Ashour et 

al.1992 

B21M 2.00 6.73 1.08 1.08 1.56 1.24 0.87 
B2 2.00 3.14 1.01 0.92 1.13 1.35 0.77 
B3 2.00 3.51 1.02 0.94 1.28 1.28 0.82  Ghosheh 

1995 
B4 2.00 3.84 0.94 0.86 1.35 1.09 0.80 

FHB2-2 2.00 5.09 1.17 4.70 1.00 1.52 1.00 
FHB3-2 2.00 5.44 1.02 5.39 0.95 1.22 0.95 Kwak et al. 

2002 
FNB2-2 2.00 4.04 1.34 3.27 1.06 1.70 1.06 

 

 The experimental shear strength is plotted against the calculated shear 

using the Eq.5.3 and compared with those obtained by other researchers, 

and shown in Figures (30, 31 and 32,). 
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Figure 30: Comparison between Sharma [1986] and Eq.5.3 (a) Eq.5.3 (b) Sharma 

equation.  
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Figure 31: Comparison between Mansur et al. [1986] and Eq.5.3 (a) Eq.5.3 (b) Mansur 

et al. equation.  
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Figure 32: Comparison between Kwak et al. [2002] and Eq.5.3 (a) Eq.5.3 (b) Kwak et 

al. equation.  
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Figure 33: Comparison between Sharma [1986] and MCFT (a) MCFT (b) Sharma 

equation.  
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Figure 34: Comparison between Mansur et al. [1986] and MCFT (a) MCFT (b) 

Mansur et al. equation.  
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Figure 35: Comparison between Kwak et al. [2002] and MCFT (a) MCFT (b) Kwak et 

al. equation.  
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Conclusions and Recommendations for Further Works 

 

1. Conclusions 

 

 The following conclusions are drawn from the current work: 

1. A method (shear failure mechanism) has been presented, according 

to which the reason of shear failure of SFRC beams with out shear 

reinforcement, subjected to shear and bending, occurs due to 

splitting of concrete. 

2. A new formula using the failure mechanism to predict the shear 

strength of SRFC slender beams is presented. The size effect is 

introduced to the derived formula. 

3. A new formula that predicts the splitting tensile strength of SFRC 

cylinders is presented in this work. The formula accounts for the 

concrete compressive strength, the fiber content, and the fiber aspect 

ratio. 

4. The failure mechanism approach of SFRC beams is also used to 

derive a formula that accounts for the ultimate shear strength of deep 

beams. 

5. The comparison of the predicted shear strength using the new 

equations with the corresponding experimental values showed a 

good agreement. 
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6. The comparisons of shear predictions showed very good results 

compared with those found in literature. 

 

 

2.Further Research Works 

 

 This new approach that is applied for rectangular SFRC beams opens 

new directions for further researches that can be summarized as follows: 

1. A further experimental works should be conducted to study the 

large-scale beams especially those of high strength SFRC. 

2. It is recommended to study the size effect of SFRC beams. 
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